5 research outputs found

    Thermal Inactivation Kinetics of Recombinant Proteins of the Lipoxygenase Pathway Related to the Synthesis of Virgin Olive Oil Volatile Compounds

    No full text
    The aim of this work was to characterize the thermal inactivation parameters of recombinant proteins related to the biosynthesis of virgin olive oil (VOO) volatile compounds through the lipoxygenase (LOX) pathway. Three purified LOX isoforms (Oep2LOX1, Oep1LOX2, and Oep2LOX2) and a hydroperoxide lyase (HPL) protein (OepHPL) were studied. According to their thermal inactivation parameters, recombinant Oep1LOX2 and Oep2LOX2 could be identified as the two LOX isoforms active in olive fruit crude preparations responsible for the synthesis of 13-hydroperoxides, the main substrates for the synthesis of VOO volatile compounds. Recombinant Oep2LOX1 displayed a low thermal stability, which suggests a weak actuation during the oil extraction process considering the current thermal conditions of this industrial process. In addition, recombinant OepHPL could be identified as the HPL activity in crude preparations. The thermal stability was the highest among the recombinant proteins studied, which suggests that HPL activity is not a limiting factor for the synthesis of VOO volatile compounds

    Highly Transparent and Conductive Films of Densely Aligned Ultrathin Au Nanowire Monolayers

    No full text
    The combination of low electrical resistance and high optical transparency in a single material is very uncommon. Developing these systems is a scientific challenge and a technological need, to replace ITO in flexible electronic components and other highly demanding applications. Here we report a facile method to prepare single layers of densely aligned ultrathin Au-nanowires, homogeneous over cm<sup>2</sup> areas. The as-deposited films show an electrical/optical performance competitive with ITO and graphene-based electrodes. Moreover, the Au-films show a good stability under ambient conditions, and the large aspect ratio of the ultrathin nanowires makes them perfect for deposition in flexible substrates

    Superparamagnetic Nanocomposites Based on the Dispersion of Oleic Acid-Stabilized Magnetite Nanoparticles in a Diglycidylether of Bisphenol A-Based Epoxy Matrix: Magnetic Hyperthermia and Shape Memory

    No full text
    Superparamagnetic nanocomposites were obtained by dispersion of oleic acid (OA)-coated magnetite NPs in an epoxy system based on diglycidylether of bisphenol A (DGEBA) modified with OA. Dispersion of conventional oleic acid-stabilized magnetite NPs in a typical epoxy matrix is not possible due to the dissimilar chemical structures of the organic coating and the reactive solvent. However, by modification of a DGEBA-based epoxy with 20 wt % OA, we obtained a suitable reactive solvent to disperse up to at least 8 wt % of OA-stabilized magnetite NPs. A tertiary amine was used to catalyze the epoxyā€“acid reaction and initiate the homopolymerization of the epoxy excess. Both reactions occurred practically in series, first the epoxyā€“acid and then the epoxy homopolymerization. It was necessary to complete the first reaction to attain a very good dispersion of magnetite NPs in the reactive solvent previous to the occurrence of the final reaction. Magnetization curves and TEM images revealed a uniform dispersion of individual nanoparticles in the cross-linked epoxy. A sample containing 8 wt % OA-coated magnetite NPs exhibited a temperature increase of 25 Ā°C at its surface when exposed to an alternating magnetic field. The temperature increase was enough to induce the shape memory effect of the nanocomposite

    Carbohydrate-Derived Polytriazole Nanoparticles Enhance the Anti-Inflammatory Activity of Cilostazol

    Get PDF
    Poly(amide-triazole) and poly(ester-triazole) synthesized from d-galactose as a renewable resource were applied for the synthesis of nanoparticles (NPs) by the emulsification/solvent evaporation method. The NPs were characterized as stable, spherical particles, and none of their components, including the stabilizer poly(vinyl alcohol), were cytotoxic for normal rat kidney cells. These NPs proved to be useful for the efficient encapsulation of cilostazol (CLZ), an antiplatelet and vasodilator drug currently used for the treatment of intermittent claudication, which is associated with undesired side-effects. In this context, the nanoencapsulation of CLZ was expected to improve its therapeutic administration. The carbohydrate-derived polymeric NPs were designed taking into account that the triazole rings of the polymer backbone could have attractive interactions with the tetrazole ring of CLZ. The activity of the nanoencapsulated CLZ was measured using a matrix metalloproteinase model in a lipopolysaccharide-induced inflammation system. Interestingly, the encapsulated drug exhibited enhanced anti-inflammatory activity in comparison with the free drug. The results are very promising since the stable, noncytotoxic NP systems efficiently reduced the inflammation response at low CLZ doses. In summary, the NPs were obtained through an innovative methodology that combines a carbohydrate-derived synthetic polymer, designed to interact with the drug, ease of preparation, adequate biological performance, and environmentally friendly production
    corecore